OpenVDB Course: Advanced Applications of OpenVDB in Production

double negative visual effects dan bailey (dan@dneg.com)

OpenVDB Uses

Level Set

Fog Volume

Vector Field

double negative visual effects

Points (New)

AttributeSet

OpenVDB extended with new Attribute API AttributeArray.h and AttributeSet.h

Attributes

TypedAttributeArray

VDB Points Leaf Node

double negative visual effects

Points located within a Leaf Node are owned by that Leaf along with all of their attributes

VDB Points Data Structure double negative visual effects

Root node (unbounded)

Internal Node 1

Internal Node 2

Point Data Leaf Node

Attribute Set

Tile values with active/inactive states

Point Data Class Structure double negative visual effects

Leaf Nodes can store different attributes (from each other)

However, not typically supported by tools

Dynamic Attribute Arrays

	Convenience	Performance	Memory	1/0	Distributi
Spatial Organisation					
Greater Compression					
Data Locality					
VDB Topology and Tools					

Motivation

double negative visual effects

In-Memory Compression

Attribute Compression (Not Available for Native Houdini Points)

Uniform Value Compression (Available for Native Houdini Points)

Stream Compression=>=>(Available for Native Houdini Points in Houdini 14 but only for disk compression)

(x, y, z) => (w) 3×32 -bits 16-bits

$[1, 1, 1, 1, 1, 1, 1, \dots] => [1]$

Position Storage

(-0.1, -0.3, 0.2) ~

double negative visual effects

Floating-point

double negative visual effects

1.{mantissa} x 2^{exponent}

4.0 6.0 7.0 5.0 8.0

8.4M

Quantisation

32-bit floating-point

(int) round(x * 2^{16f} + 0.5f)

16-bit integer

Encoding

16-bit integer

Decoding

float(x) / 2^{16f}

32-bit floating-point

Memory: 568MB

Scatter

double negative visual effects

Gather

double negative visual effects

Point Index Grid / Point Partitioner

26.2s

Point Data Grid

11.7s

2.23x

256 Million Points 64 Million Voxels

In-House Dynamo Liquid Solver double negative visual effects

Houdini

Large Data Sets All Stored using OpenVDB

Dynamo Data Model

Dynamo Distribution

OpenVDB OpenVDB Points

Dynamo Sparse Solve

See Start **OpenVDB** Points

double negative visual effects

OpenVDB Points Leaf Nodes

OpenVDB

SOP "Micro-Solvers"

Houdini Integration

Pressure Visualisation

double negative visual effects

Dynamo FLIP Liquid Simulation 1 Billion Points +

Distribution Scaling

Near-Linear Scaling using OpenVDB

Nodes

Point Count: 1 billion Peak Memory: 60GB Performance: 10-15 mins/frame Nodes: 1 machine

Render Time: 1 hour/frame Memory: 11.0 GB

double negative visual effects

Clarisse iFX

Clarisse Integration

Intersection Testing

Tracing Rays - DDA for Level Sets double negative visual effects

Intersections: 9 voxels

Tracing Rays - DDA for Points

double negative visual effects

Intersections: 19 voxels

More Intersections due to Point Radius!

6 Billion Points (position only) Memory Usage: 17.84GB

double negative visual effects

Tracing Rays - Motion Blur

t0

double negative visual effects

Intersections: 40 voxels

Even More Intersections to Introduce Motion Blur!

Smallest Unit: $2 \times 2 \times 2$ Voxels ~

double negative visual effects

Position at T - 0.5

double negative visual effects

Bounding Box at T + 0.5 Interpolate In-Between Bounding Box at T - 0.5

Root node (unbounded)

Internal Node 1

Internal Node 2

Leaf Node

Sub Leaf Node

BVH Structure

Clarisse BVH Tree Primitive = Leaf

Custom BVH Tree Primitive = 2x2x2 Voxels

• • • • • • • • • • • project:/ • geometry •

	Attribute Editor +
	Interactive Spee Raytracing 1 Bil Points in Clariss
	Layer Editor + Normal +
EAUTY_preview	Contraction of the second sector of the second sector of the second sector of the second sector of the second seco
	Isyer_3d
	State

**	Ξ	×	•	8
	_			

Memory Footprint: 10.4GB (VDB Points) 20% (VDB Grid) 6.4MB (BVH Tree)

Attribute Editor +

Position (16-bit) Velocity (32-bit + 16-bit)

	and the second	a la la la seconda de la s			_
	Material Linker				
Ed	R				0
•	Shading Group	Material		Clip Map	
•	points	Դ € project	3		-

720p with 6 anti-alias samples Renders in 200s

220 f 240 f 260 f 280 f 300 f 300 f

100.0 % Use Selection

Optimum Voxel Size

Voxel Size: 0.25 Leaves: 583 Memory: 956 MB

Voxel Size: 0.05 Leaves: 17,200 Memory: 999 MB

Low Memory, Fast Performance

Voxel Size: 0.01 Leaves: 789,000 Memory: 2,829 MB

OpenVDB API

Open-Source

openvdb::points::initialize()

DataLeaf	Serialisatior

PointConversion

OpenVDB Houdini

Viewport Visualisation

Due to be announced on OpenVDB mailing list very soon! Email me for more information (dan@dneg.com)

