
OpenVDB Course:
Advanced Applications of
OpenVDB in Production

dan bailey (dan@dneg.com)

Level Set Fog Volume

Vector Field Alpha Mask

OpenVDB Uses

Points (New)

AttributeSet

 *

Attributes

AttributeArray TypedAttributeArray

• OpenVDB extended with new Attribute API
• AttributeArray.h and AttributeSet.h

VDB Points Leaf Node

Points located within a
Leaf Node are owned
by that Leaf along with
all of their attributes

VDB Points Data Structure

Tile values with
active/inactive states

Active Mask
Child Mask
Tile values / Child pointers

Active Mask
Voxels

Root node
(unbounded)

Internal Node 1

Internal Node 2

Point Data
Leaf Node

Attribute Set Attribute Array
(New)

Point Data Class Structure
Tree

Root Node Accessor Registry

Internal Node Background Tiles

Point Data Leaf Node Bit Mask Tiles

Voxels Bit Mask

Meta Map

Transform

Linear Maps Frustum

Grid
Attribute Set

Attribute Descriptor Attribute Arrays

Dynamic Attribute Arrays

Leaf Nodes can store different attributes (from each other)

However, not typically supported by tools

Convenience Performance Memory I/O Distribution

Spatial
Organisation

Motivation

Data
Locality

Greater
Compression

VDB Topology
and Tools

Attribute Compression

In-Memory Compression

(x, y, z) => (w)
3 x 32-bits 16-bits

Uniform Value Compression [1, 1, 1, 1, 1, 1, …] => [1]

Stream Compression => =>

(Not Available for Native Houdini Points)

(Available for Native Houdini Points)

(Available for Native Houdini Points in Houdini 14 but only for disk compression)

-0.5

0.5 -0.5

-0.5

0.5

0.5

(-0.1, -0.3, 0.2)

Position Storage

Exponent Mantissa
10110111 0101011101010101010101010

Floating-point

8 bits 24 bits

1.{mantissa} x 2{exponent}

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

8.4M 8.4M8.4M

127

0.5

8.4M

126

float(x) / 216f

(int) round(x * 216f + 0.5f)

Quantisation

32-bit
floating-point

16-bit
integer

32-bit
floating-point

16-bit
integer

Encoding

Decoding

Float Array
Memory: 1.92GB

8-bit Quantisation
Memory: 568MB

No Quantisation
Memory: 1.95GB

16-bit Quantisation
Memory: 1.02GB

Position Compression

1.86s 1.71s 1.60s

Scatter

Gather

Gather Rasterisation Performance

256 Million Points
64 Million Voxels

26.2s

11.7s

2.23x

Point Index Grid /
Point Partitioner

Point Data Grid

Dynamo

In-House Dynamo Liquid Solver

Dynamo
Data Model

Dynamo Nodes

OpenVDB
OpenVDB Points

Dynamo Distribution

Large Data Sets All Stored using OpenVDB

Dynamo Sparse Solve

OpenVDB Points
Leaf Nodes

OpenVDB Points

Houdini Integration

SOP “Micro-Solvers” Pressure Visualisation

Dynamo FLIP Liquid Simulation
1 Billion Points +

Distribution Scaling

Nodes 1 2 3 4 5 6 7 8 9 10

3.7x

5.5x

Near-Linear Scaling using OpenVDB

Point Count: 1 billion
Peak Memory: 60GB
Performance: 10-15 mins/frame
Nodes: 1 machine

Render Time: 1 hour/frame
Memory: 11.0 GB

Intersection Testing

Clarisse Integration

Ray Bundle

Hit Points +
Derivatives

Tracing Rays - DDA for Level Sets

t0

t1

t
Intersections:

9 voxels

Tracing Rays - DDA for Points

t0

t1

t
Intersections:

19 voxels

More Intersections
due to Point Radius!

6 Billion Points (position only)
Memory Usage: 17.84GB

Tracing Rays - Motion Blur

t0

t1

t
Intersections:

40 voxels

Even More Intersections
to Introduce Motion Blur!

BVH Structure

Position at T + 0.5

Position at T - 0.5

Position at T

Smallest Unit:
2 x 2 x 2 Voxels

BVH Structure

Bounding Box at T + 0.5

Bounding Box at T - 0.5

Interpolate In-Between

BVH Structure
Root node
(unbounded)

Internal Node 1

Internal Node 2

Leaf Node

Clarisse BVH Tree
Primitive = Leaf

Custom BVH Tree
Primitive = 2x2x2 Voxels

Sub Leaf Node

Interactive Speed
Raytracing 1 Billion
Points in Clarisse!

Memory Footprint:
10.4GB (VDB Points)
20% (VDB Grid)
6.4MB (BVH Tree)

Position (16-bit)
Velocity (32-bit + 16-bit)

720p with 6 anti-alias samples
Renders in 200s

Optimum Voxel Size

Voxel Size: 0.25 Voxel Size: 0.05 Voxel Size: 0.01
Leaves: 583 Leaves: 17,200 Leaves: 789,000

Low Memory, Fast Performance

Memory: 956 MB Memory: 999 MB Memory: 2,829 MB

Slow
Performance

High
Memory

Open-Source

OpenVDB Points SOP Viewport Visualisation

AttributeArray

AttributeSet

PointDataLeaf

PointConversion

Serialisation

OpenVDB API

OpenVDB Houdini

openvdb::points::initialize()

Houdini 13+

Due to be announced on OpenVDB mailing list very soon!
Email me for more information (dan@dneg.com)

