
John Lynch

OpenVDB in Houdini

Houdini

● Node-based, procedural 3D modelling,

animation, and visual effects software

● Built-in dynamics solvers

● Volume simulation and rendering

Projects

● FLIP liquid solver

● Whitewater solver

● OceanFX toolkit

● OpenCL-accelerated Pyro solver

● POP and Grain solvers

● Geometric and dynamic fracturing

OpenVDB in Houdini

● First introduced in 12.5

● Integration with Houdini volume toolset

● Conversion to and from native volumes

● 163 voxel tiles

● Constant tile optimization

● VEX and Mantra support for VDB Volumes

● VDB specific SOPs from OpenVDB team

● Siggraph 2013 Course Slides

● openvdb.org

Higher Level OpenVDB Tools

Clouds and Grooming

● Introduced in Houdini 13 and 14

● Shape construction

● Noise modulation

● Advection

● Rendering

Higher Level OpenVDB Tools

Fluid and Grain Solvers

● Introduced in Houdini 14 and 15

● VDB operations throughout

● Sourcing data for simulation

● Accelerating simulation

● Post-processing simulation data

Higher Level OpenVDB Tools

Overview

● SDF Collisions

● Accelerated Point Lookup

● FLIP Data Compression

● Sparse Points From Volume

● Fluid Surfacing

SDF Collisions

● Deforming Object shelf tool

● Point velocities on geometry

● Collision SDF with VDB From Polygons

● Cached to disk at substeps

SDF Collisions

● Standard collision tool across solvers

● Point / SDF collisions

● Voxel weights in variational pressure

solve for FLIP

● SDF often re-used downstream

● Secondary element collisions

● Boolean operations

● Particle activation

Accelerated Point Lookup

Point Index Grid

● Partition points into voxels

● Uses Point Partitioner under the hood

● Store point indices in voxels

● Query arbitrary position against uniform

radius particles

● Constant-time query returns iterator over

particles in touched voxels

● Deterministic but not sorted

● Fast and memory efficient

● “Gather” operation

Accelerated Point Lookup

FLIP Solver Operations

● Transfer particle velocity to simulation field

● Gas Particle To Field DOP

● Build SDF representing fluid surface

● Gas Particle To SDF DOP

● Calculate particle density in voxel

● Gas Particle Count DOP

● Reseed voxels with too few / many particles

● Gas Seed Markers DOP

Accelerated Point Lookup

Comparison to UT_PointGrid

● Transfer velocity attribute to face-sampled

vector field

● Dense configuration has all points at center

● Medium test is 93M points and 12003 voxels

Accelerated Point Lookup

Sparse Performance

● 2 – 3X faster for sparse configurations

● 1 min / frame improvement at 220M

particles and 2 substeps

● Additional gains from other point lookup

operations

Accelerated Point Lookup

Dense Performance

● Almost 2X faster even for dense

configurations

● Small difference in sparse vs dense for

VDB

Accelerated Point Lookup

PBD-based Grain Solver

● VDB collisions

● pgfind for neighbor lookup

● Spatial lookup on CPU

● Constraint loop on GPU

● VDB-based sandbox generation

● VDB-based particle activation

FLIP Data Compression

● New in Houdini 15

● 100’s of millions of particles common

● Especially when distributed!

● Large disk space requirements

● High network load

FLIP Data Compression

● Dense, native simulation data

● Sparse data as lossy post-process

FLIP Data Compression

● Dense, native simulation data

● Sparse data as lossy post-process

● FLIP Particles

● Primary simulation representation

● Marker particles

● Velocity and other attributes

● Surface detail

FLIP Data Compression

● Dense, native simulation data

● Sparse data as lossy post-process

● FLIP Particles

● Primary simulation representation

● Marker particles

● Velocity and other attributes

● Surface detail

● Surface SDF and velocity volumes

● Secondary simulation representation

● FLIP pressure solve and advection

● Secondary elements

● Emission

● Depth testing

● Advection

● Fluid data “decompression”

FLIP Data Compression

Example

● Uncompressed dense data set

● 11M Particles

● Tiny!

● 14M voxels in surface and vel

● 52 Gb for 240 frames

● Blosc compressed

● Playback 3.2 sec / frame

FLIP Data Compression

Example

● Lossy-compressed data set

● 1.3M particles (8x)

● 7M 16-bit voxels (4x)

● 8.5 Gb on disk (6x overall)

● Playback 300 ms / frame (10x)

● Scrubbable

● Higher res / deeper =

better ratios

● 1B particles at 1.5 bytes per

FLIP Data Compression

Steps

● Points

● Cull by depth

● Spatially partition into 4K tiles with

VDB’s Point Partitioner

● Create packed primitive per tile

● Delay Load

FLIP Data Compression

Steps

● Volumes

● Native surface volume to narrow-band VDB

● Zero velocity field by backwards advection

and convert to VDB

● Prune inactive voxels

● Save as 16-bit floats

● Output packed particles + surface and velocity

VDBs

FLIP Data Compression

Compressed Output

● 2K tiled Packed Primitives

● 300 ms / frame playback

FLIP Data Compression

Delayed Loading

● Meshed narrow-band

surface and velocity VDBs

● Points never load from disk

● 400 ms / frame playback

● VDB meshing and volume

sampling

FLIP Data Compression

Merge Distributed Slices

● Compressed FLIP data from several nodes

● Splice together for downstream operations

● On save

● Delete particles outside slice

● Compress fluid

● Zero and de-activate velocity

● On load

● Merge particles

● Union all surface SDFs

● Combine all active regions of velocity

● “Flatten All B into A”

FLIP Data Compression

Load by Region

● 120M particle distributed sim

● ~12M particles compressed

● Spatial partition allows

restricting loading to region

● Bounding box

● Camera

● Tune secondary elements

● Iterate over surfacing

FLIP Data Compression

Where Are All My Particles?

● Thin particle layer

● 700 ms / frame playback

● Deep secondary elements?

● Aeration

● Bubbles

● Surfacing?

● Reseed points with velocity

anywhere within fluid

Sparse Points From Volume

Algorithm (VDB)

1. Calculate hi-res narrow-band SDF of input

2. Convert SDF to fog volume to activate interior

3. Copy active voxels to half-res, axis-aligned

background VDB

4. Dilate active voxels by jitter scale

5. Run multithreaded VEX over active voxels to

generate jittered points inside SDF

Sparse Points From Volume

Half-res Background VDB

• Gives constant “jitter space”

• Sand emission

• Tricky to create, easy to remove

• Control over multithreading

• Hi-res slow at ~1 point per voxel

• Better ~8 or even ~64

• for(i=0; i < ptspervox; i++)

{

pos = @P + getjitter(@P, i);

if(volumesample(pos) < 0)

addpoint(pos);

}

Sparse Points From Volume

Whitewater Emission

1. FLIP particles as input

2. Hard cull on depth and velocity

3. Sample acceleration, vorticity, curvature

from simulation fields

4. Map to emission probability

5. Cull zero emission

Reseeding needs to feed into step 3!

Sparse Points From Volume

Whitewater Active Area

• Map velocity to 0-1 fog

(VDB Analysis)

• Map culling depth and depth limit to

0-1 and combine with velocity

(VDB Combine)

• De-activate zero regions

(VDB Activate)

Sparse Points From Volume

Reseeding Active Area

• Generate points in active voxels

(PointsFromVolume)

• Sample velocity field

(AttribFromVolume)

• Feed into Whitewater emission

criteria

Sparse Points From Volume

Sparse Example

• 80M particle adaptively

distributed FLIP sim

• 10M particles compressed

• Spliced with VDB ops

• VEX-based high-order

advection directly from VDB

• Pockets of whitewater

• Aeration important for look

Sparse Points From Volume

Why Not VDB Scatter?

• Does not use standard VDB

C++ scatter operator

• Specific point configurations

• Boundary oversampling

• Tetrahedral packing

• Purely constructive avoids data

structure fragmentation

Sparse Points From Volume

Grain Generation

• Sandbox tool creates grains from extruded

volume

• Structured points with strict SDF rejection

produces ridge artifacts

Sparse Points From Volume

Dithering

• Dither!

• Update VEX code to make SDF test

probabilistic close to isosurface

• Removes artifact but retains low-energy

configuration

VDB-based Particle Activation

• Activation from nearby fast-

moving neighbors (pgfind)

• Activation from dilated collision

VDB (VDB Reshape SDF)

• Activation by castle volume

(VDB From Polygons)

• Natural-looking activation from

low-energy point configuration

Surfacing

• Create high-quality polygonal mesh from

compressed fluid input

• Provide filtering and morphological operations

• Generate spatially varying masks to allow

control over filtering

• Output adaptive polygon mesh

• “Liquid in the Croods”

• Budsberg et al.

Surfacing

Initial Surface

• Create narrow-band SDF from

particles

• VDB From Particle Fluid (H13)

• Average Position

• Ghost points

• Less post-processing

• Less control

• VDB From Particles

• Spherical

• Scales very well

• Requires post-processing

• More control

Surfacing

Union

• Erode surface SDF by particle

compression bandwidth

• VDB Reshape SDF

• Union with particle surface

• VDB Combine

• Needs post-processing!

Surfacing

Spatially Varying Mask

• Generate fog volume mask

• Velocity

• Vorticity

• Collision proximity

• User provided VDB

• VDB Analysis

• VDB Combine

• Use to modulate filtering

Surfacing

Morphological Ops and Filtering

• Dilate / Smooth / Erode

• “Close” operation

• 2nd order smoothing

• Stronger Final Smooth

• Gaussian

• Usually masked

Surfacing

SDF Operations

• Subtract Collisions

• VDB Combine

• Flatten edges at boundary

• VDB Combine

• VDB Morph

Surfacing

Adaptive Polygonal Mesh

• Fewer polygons at low curvature

• Reduced memory and

rendering requirements

• Additional level of smoothing

Surfacing

Adaptive Polygonal Mesh

• Fewer polygons at low curvature

• Reduced memory and

rendering requirements

• Additional level of smoothing

Surfacing Results

Surfacing Results

Surfacing Results

Surfacing Results

Thank you

