
GO | PROCEDURAL

OpenVDB Adoption in Houdini

Edward Lam
Senior Software Architect

SIGGRAPH 2013

OpenVDB in Houdini

 How we added OpenVDB to Houdini
 Approach
 Integration challenges
 Coding tricks
 Volume display

 Houdini OpenVDB Team

 Jeff Lait, Edward Lam, Mark Alexander, Halfdan Ingvarsson,

Neil Dickson, Adrian Saldanha, Adam Jeziak

Integrating with Existing Volumes

 Replace: Too much existing code
 Just-in-time conversion (our approach for OpenCL grids)

 Unexpected failures due to large VDBs
 Lossy conversion: active regions, extend conditions, etc

 Two volume types
 Forces explicit conversions
 Not always clear what operations need what type

 Nodes/algorithms to work with both types where appropriate
 Windows and Mac OS X port

Old Volumes

 Terminology
 Volume: the old Houdini volume type – ”Dense Volumes”
 VDB: the VDB type – ”Sparse Volumes”

 What were they?
 163 voxel tiles, constant tile optimization
 Similar to Field3D default configuration

Demo: BigBrain
 Data courtesy of the CBRAIN project

 https://bigbrain.loris.ca/main.php
 http://cbrain.mcgill.ca/

Active Regions

 Key difference: “active” voxels instead of “bounds”
 Dense volumes: VDB with cube of active voxels
 Operations that apply to ”all” voxels mean apply to all active
voxels

 Need tools to adjust the active region
 Crop/extend for Volumes
 Union, dilate, erode, intersect for VDBs

 Demo: Conway's Game of Life in 3D

Transform Hell

 Old Volumes: Normalized [0..1]3 coords over bounding box
 VDB: Poorly defined since active region is dynamic

 No native VDB equivalent

 Can sometimes use the bbox of the active region
 Samples at center of the voxel or corner?

 Volumes define center-sampled grids
 VDBs define corner-sampled

 Volume samples should be the same regardless of type

Baggage from Volumes

 Some concepts useful from Volumes
 Resolution: Extents of active voxels

 Note: Negative voxel indices in VDBs

 Bounds: Extents of active voxels in object space
 Normalized Space: [0..1]3 or [-1..1]3 mapping of bounds to
object space

Frustum Frustration

 Same: Linear taper
 Constant Z-steps, XY-plane shrunk along Z axis

 VDBs define only a single taper
 Volumes have independent X & Y tapers

 VDBs define the taper at the near Z plane
 Volumes define it at the far Z plane

Frustum Clipping

 Normal VDBs define an infinite extent
 Very useful and freeing for the artist!

 Taper creates a singularity
 Nightmare of ”eyesplits” from RenderMan all over again!
 Easy for an artist to blow up a scene by moving geometry too close to a
camera

 Treat Frustum VDBs as having a finite extent
 Writing operations clip to the defined frustum size, thus clamping at
near/far planes

 Still superior to Volumes as these can be very large

One Transform to Rule Them All

 GEO_PrimVolumeXform class
 Originally created just to factor transform out of the Volume
primitive for speed

 Generalized to provide:
 Volume to Object
 Index to Object

 Allows sampling code to be written independent of Volume or
VDB

Algorithms

 Dense values → VDB ”leaf nodes”
 Constant nodes → VDB ”tiles”
 Goal: Operate over both volume and node types efficiently
 Tree visitor
 Grid per thread (thread-local)
 GridType::merge()

 Fast since it steals data
 Works because we ensure non-overlapping nodes

 Prune

Invalid SDFs

 A lot of VDB operations expect ”true” SDFs
 A lot of artists will produce ”incorrect” SDFs
 Do not assume narrow band principle is obeyed!

 Provide mechanism to rebuild when necessary
 Convert to Poly, Convert to SDF surprisingly effective

VDB Types

 grid.isType<openvdb::FloatGrid>() is a string compare
 Houdini only supports fixed set of grid types

 UT_VDBType UTvdbGetGridType(const GridBase &grid)
UT_VDB_FLOAT, UT_VDB_DOUBLE, UT_VDB_INT32, UT_VDB_INT64, etc

 Cache type outside of loops

VDB Invocation

 Everything needs to be templated

#define UT_VDB_CALL(GRIDT, RETURN, FNAME, GRIDBASE, ...) \
 { RETURN FNAME <GRIDT> (UTvdbGridCast<GRIDT>(GRIDBASE),__VA_ARGS__); }
 // NOTE: Visual C++ requires at least one argument in variadic
#define UTvdbCallAllType(TYPE, FNAME, GRIDBASE, …) \
 if (TYPE == UT_VDB_FLOAT) \
 UT_VDB_CALL(openvdb::FloatGrid,(void),FNAME,GRIDBASE,__VA_ARGS__) \
 else if (TYPE == UT_VDB_DOUBLE) \
 UT_VDB_CALL(openvdb::DoubleGrid,(void),FNAME,GRIDBASE,__VA_ARGS__) \
 … etc …

template <typename GridType>
static void operation(const GridType &grid, double param);

void doStuff(const GEO_PrimVDB &vdb, double param) {
 UTvdbCallAllType(vdb.getStorageType(), operation, vdb.getGrid(), param);
}

Math Types

 Your favorite vector library may not be openvdb::math

template <typename S>
UT_Matrix3T<S>
UTvdbConvert(const openvdb::math::Mat3<S> &src);

Accessors

 Accessors are very important
 One accessor for each direction reduces thrashing quite a bit

FloatGrid::ConstAccessor positive_acc[3] =
 { myGrid.getConstAccessor() // X
 , myGrid.getConstAccessor() // Y
 , myGrid.getConstAccessor() // Z
 };
FloatGrid::ConstAccessor negative_acc[3] =
 { myGrid.getConstAccessor() // X
 , myGrid.getConstAccessor() // Y
 , myGrid.getConstAccessor() // Z
 };

SDF Display

 For all active voxels
 Check for neighbour crossing threshold

 Generate point splat at neighbour crossing point
 Set normal to gradient at the voxel

 Because of perspective distortion, care must be taken with the
lighting calculation
 Two sided lighting avoids black/white rims on a torus

Wireframe Display

 Outline active nodes?
 Becomes very noisy

 Outline bounding box of active nodes?
 Looks like Volumes

 Houdini uses ”contour” of the active nodes

Active nodes vs Contours 1

Active nodes vs Contours 2

Smoke Display

 Ideally, render tiles independently
 But proper edge interpolation?

 (Have to actually send 103 tiles to GL so it can render to the edges properly)

 But shadows?

 Simpler: Downsample
 Matches Volume behaviour for large volumes anyways!
 Detached puffs of smoke decrease in res as they separate

 Demo: CloudFX

Acknowledgements

 Thanks also to Brett Miller and the OpenVDB team!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

