
GO | PROCEDURAL

OpenVDB Adoption in Houdini

Edward Lam
Senior Software Architect

SIGGRAPH 2013

OpenVDB in Houdini

 How we added OpenVDB to Houdini
 Approach
 Integration challenges
 Coding tricks
 Volume display

 Houdini OpenVDB Team

 Jeff Lait, Edward Lam, Mark Alexander, Halfdan Ingvarsson,

Neil Dickson, Adrian Saldanha, Adam Jeziak

Integrating with Existing Volumes

 Replace: Too much existing code
 Just-in-time conversion (our approach for OpenCL grids)

 Unexpected failures due to large VDBs
 Lossy conversion: active regions, extend conditions, etc

 Two volume types
 Forces explicit conversions
 Not always clear what operations need what type

 Nodes/algorithms to work with both types where appropriate
 Windows and Mac OS X port

Old Volumes

 Terminology
 Volume: the old Houdini volume type – ”Dense Volumes”
 VDB: the VDB type – ”Sparse Volumes”

 What were they?
 163 voxel tiles, constant tile optimization
 Similar to Field3D default configuration

Demo: BigBrain
 Data courtesy of the CBRAIN project

 https://bigbrain.loris.ca/main.php
 http://cbrain.mcgill.ca/

Active Regions

 Key difference: “active” voxels instead of “bounds”
 Dense volumes: VDB with cube of active voxels
 Operations that apply to ”all” voxels mean apply to all active
voxels

 Need tools to adjust the active region
 Crop/extend for Volumes
 Union, dilate, erode, intersect for VDBs

 Demo: Conway's Game of Life in 3D

Transform Hell

 Old Volumes: Normalized [0..1]3 coords over bounding box
 VDB: Poorly defined since active region is dynamic

 No native VDB equivalent

 Can sometimes use the bbox of the active region
 Samples at center of the voxel or corner?

 Volumes define center-sampled grids
 VDBs define corner-sampled

 Volume samples should be the same regardless of type

Baggage from Volumes

 Some concepts useful from Volumes
 Resolution: Extents of active voxels

 Note: Negative voxel indices in VDBs

 Bounds: Extents of active voxels in object space
 Normalized Space: [0..1]3 or [-1..1]3 mapping of bounds to
object space

Frustum Frustration

 Same: Linear taper
 Constant Z-steps, XY-plane shrunk along Z axis

 VDBs define only a single taper
 Volumes have independent X & Y tapers

 VDBs define the taper at the near Z plane
 Volumes define it at the far Z plane

Frustum Clipping

 Normal VDBs define an infinite extent
 Very useful and freeing for the artist!

 Taper creates a singularity
 Nightmare of ”eyesplits” from RenderMan all over again!
 Easy for an artist to blow up a scene by moving geometry too close to a
camera

 Treat Frustum VDBs as having a finite extent
 Writing operations clip to the defined frustum size, thus clamping at
near/far planes

 Still superior to Volumes as these can be very large

One Transform to Rule Them All

 GEO_PrimVolumeXform class
 Originally created just to factor transform out of the Volume
primitive for speed

 Generalized to provide:
 Volume to Object
 Index to Object

 Allows sampling code to be written independent of Volume or
VDB

Algorithms

 Dense values → VDB ”leaf nodes”
 Constant nodes → VDB ”tiles”
 Goal: Operate over both volume and node types efficiently
 Tree visitor
 Grid per thread (thread-local)
 GridType::merge()

 Fast since it steals data
 Works because we ensure non-overlapping nodes

 Prune

Invalid SDFs

 A lot of VDB operations expect ”true” SDFs
 A lot of artists will produce ”incorrect” SDFs
 Do not assume narrow band principle is obeyed!

 Provide mechanism to rebuild when necessary
 Convert to Poly, Convert to SDF surprisingly effective

VDB Types

 grid.isType<openvdb::FloatGrid>() is a string compare
 Houdini only supports fixed set of grid types

 UT_VDBType UTvdbGetGridType(const GridBase &grid)
UT_VDB_FLOAT, UT_VDB_DOUBLE, UT_VDB_INT32, UT_VDB_INT64, etc

 Cache type outside of loops

VDB Invocation

 Everything needs to be templated

#define UT_VDB_CALL(GRIDT, RETURN, FNAME, GRIDBASE, ...) \
 { RETURN FNAME <GRIDT> (UTvdbGridCast<GRIDT>(GRIDBASE),__VA_ARGS__); }
 // NOTE: Visual C++ requires at least one argument in variadic
#define UTvdbCallAllType(TYPE, FNAME, GRIDBASE, …) \
 if (TYPE == UT_VDB_FLOAT) \
 UT_VDB_CALL(openvdb::FloatGrid,(void),FNAME,GRIDBASE,__VA_ARGS__) \
 else if (TYPE == UT_VDB_DOUBLE) \
 UT_VDB_CALL(openvdb::DoubleGrid,(void),FNAME,GRIDBASE,__VA_ARGS__) \
 … etc …

template <typename GridType>
static void operation(const GridType &grid, double param);

void doStuff(const GEO_PrimVDB &vdb, double param) {
 UTvdbCallAllType(vdb.getStorageType(), operation, vdb.getGrid(), param);
}

Math Types

 Your favorite vector library may not be openvdb::math

template <typename S>
UT_Matrix3T<S>
UTvdbConvert(const openvdb::math::Mat3<S> &src);

Accessors

 Accessors are very important
 One accessor for each direction reduces thrashing quite a bit

FloatGrid::ConstAccessor positive_acc[3] =
 { myGrid.getConstAccessor() // X
 , myGrid.getConstAccessor() // Y
 , myGrid.getConstAccessor() // Z
 };
FloatGrid::ConstAccessor negative_acc[3] =
 { myGrid.getConstAccessor() // X
 , myGrid.getConstAccessor() // Y
 , myGrid.getConstAccessor() // Z
 };

SDF Display

 For all active voxels
 Check for neighbour crossing threshold

 Generate point splat at neighbour crossing point
 Set normal to gradient at the voxel

 Because of perspective distortion, care must be taken with the
lighting calculation
 Two sided lighting avoids black/white rims on a torus

Wireframe Display

 Outline active nodes?
 Becomes very noisy

 Outline bounding box of active nodes?
 Looks like Volumes

 Houdini uses ”contour” of the active nodes

Active nodes vs Contours 1

Active nodes vs Contours 2

Smoke Display

 Ideally, render tiles independently
 But proper edge interpolation?

 (Have to actually send 103 tiles to GL so it can render to the edges properly)

 But shadows?

 Simpler: Downsample
 Matches Volume behaviour for large volumes anyways!
 Detached puffs of smoke decrease in res as they separate

 Demo: CloudFX

Acknowledgements

 Thanks also to Brett Miller and the OpenVDB team!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

